

Dipartimento di Matematica e Fisica

Laboratorio CIRCE

SISTEMA DI SLITTE MOTORIZZATE E RAFFREDDATE

Il presente documento è rivolto al personale esperto autorizzato ad accedere alla sala Tandem e alla console del T.A.L.

Sono consultabili le seguenti due sezioni relative, rispettivamente, all'hardware e al software:

- HW e DETTAGLI SLITTE
- SW e troubleshooting

Autore: G.Porzio

HW e DETTAGLI MOTORI

Figura 1 (FC3 slits)

Figura 2 GSI (slits)

Nelle figure 1 e 2 sono riportate i sistemi di slitte dove si applica il presente documento, ossia le slitte in FC3 (H.E.) e quelle del GSI sul canale ERNA.

Per entrambi i sistemi la motorizzazione è stata realizzata tramite 4 motori passo-passo della National Instruments 7411E. Dalla figura 3 è possibile notare i dettagli delle connessioni.

Figura 3 (Motor details)

Nella figura 4 è possibile vedere la posizione dei fine corsa.

Figura 4 (motore e fine corsa slitte FC3)

Di seguito è riportata l'immagine del power supply della "Mean Well" utilizzato per alimentare i 4 motori.

Figura 5.1 (power supply 24 V 10 A)

Di seguito sono riportati le immagini relative ad alcuni dettagli del sistema slitte GSI.

Figura 7.2 (fine corsa slitte GSI)

L'alimentatore, sempre della Mean Well da 24 Volt e 10 Ampere, è sistemato nel rack sotto il doppietto quadrupolare come riportato in figura 5:

Figura 8 (Power supply GSI)

SW e troubleshooting

Nella tabella seguente sono riportati gli ip assegnati agli step motors:

192.168.1.35	left motor gsi erna
192.168.1.36	up motor gsi erna
192.168.1.37	right motor gsi erna
192.168.1.38	down motor gsi erna
192.168.1.5	left motor FC3 slits
192.168.1.6	down motor FC3 slits
192.168.1.8	right motor FC3 slits
192.168.1.12	up motor FC3 slits

Il software per la gestione dei motori è stato sviluppato in labview 2016.

Attenzione, le versione precedenti di labview non sono compatibili con i motori in quanto il protocollo di comunicazione interno ad essi è compatibile con un add-on sviluppato nel 2016 e non è retro compatibile.

Assicurarsi che sulla macchina dalla quale si vuole operare ci sia LabView 2016 e sia installato il seguente pacchetto: "SoftMotion module 2016" scaricabile da:

 $\label{linear} $$ \102.168.1.111\Public\LabView\2018_july\FC3_INSTALLER\FC3_slits\LabVIEWSoftMotionModule2016.exe \label{linear} execution and the second second$

La GUI ha tre sotto pannelli:

- Status
- Control
- Setup

Il pannello "setup" editabile solo dall'amministratore in possesso di password permette di definire l'indirizzo ip da assegnare ai motori, e la distanza della slitta dalla linea di fascio, ossia la distanza tra i due fine corsa. Laddove dovesse cambiare tale distanza va eseguita necessariamente la procedura di calibrazione.

status control setup			
DOWN IP MOTOR	RIGHT IP MOTOR	UP IP MOTOR	LEFT IP MOTOR
k niss:\\192.168.1.6 ▼	¼ niss:\\192.168.1.8 ▼	^I / ₀ niss:\\192.168.1.12	¹ / ₆ niss:\\192.168.1.5
DISTANCE OF BEAM AVIS (mm)	DISTANCE OF BEAM AXIS (mm)	DISTANCE OF BEAM AXIS (mm)	DISTANCE OF BEAM AXIS (mm)
× 12.6	7 10.73	19.7	11.66
calib (DOWN) mm/step	calib (RIGHT) mm/step	calib (UP) mm/step	calib (LEFT) mm/step
0.000329808	-0.0003216	-0.00030646	-0.000314829
			general error
	performing C.	ALIBRATION Elapsed Time (s)	status
STOP APPLICATION	calibration	0	
			code source

Figura 9 (Setup Panel)

Dal pannello di "Status" è possibile verificare lo stato dei motori.

"Motor state" verde significa che il motore è connesso alla rete ed è raggiungibile tramite la funzione ping.

Il led corrispondente a "Enabled" di colore verde significa che il motore è anche correttamente configurato e funzionante, viceversa sarebbe rosso.

1 million		1	
motor state	motor state	motor state	motor state
Motion Handle AXIS out	Motion Handle AXIS out	Motion Handle AXIS out	Motion Handle AXIS out
¹ / ₆ niss:\\192.168.1.6	¹ / ₆ niss:\\192.168.1.8	^I / ₆ niss:\\192.168.1.12	¹ / ₆ niss:\\192.168.1.5
Motion Handle straight out	Motion Handle straight out	Motion Handle straight out	Motion Handle straight out
Reflum error out status code d 0 source	Refurn error out status code source	Petium error out status code d 0 source	Refurn error out status code d 0 source
DOWN Enabled	RIGHT Enabled	IIP Enabled	LEFT Enabled

Figura 10 Status Panel (in questo caso il motore LEFT è inutilizzabile, l'unità va riavviata)

Dal pannello in figura 8 è possibile gestire i motori e visualizzare la posizione delle slitte.

Figura 11 Control Panel (visione di insieme)

Dettaglio:

È lo stato attuale dei motori. LED tondo (spento)= motore fermo LED tondo (acceso)= motore in movimento LED quadrato presente= fine corsa raggiunto N.;B: quando si raggiungono i fine corsa si accende il LED rosso e rimane verde il LED tondo.

Nel pannello di figura 9 è possibile vedere il caso di un malfunzionamento di uno dei motori, in questo caso il motore LEFT ha smesso di funzionare. In tal caso scompare, dal pannello 1, i led relativi allo stato del motore e dal pannello 2 sia lo stato dei finecorsa che la posizione della slitte. *A questo punto l'unità va riavviata.* Tenere presente che il fatto che il motore si sia disconnesso non vuol dire che si sia persa la posizione della

slitta, il motore è settato in modo che in caso di fault vada in una condizione di holding con il 50% della corrente massima di fase.

Figura 12 (esempio di malfunzionamento)